
ARTIFICIAL INTELLIGENCE

Porting ML models
to custom AI HW
accelerators
DeGirum’s PySDK
can help developers
who wish to port ML
models to custom HW

Upcoming hardware (HW)
accelerators for edge
artificial intelligence (AI)
applications promise
unprecedented efficiency
in power, price, and
performance. HW vendors
generally couple their HW
with software (SW) tools,
illustrating applications
that run out-of-the-box
along with a collection
of ready to use machine
learning (ML) models.

While such models are
sufficient to get started with
the development process,
application developers
eventually want to port
their own ML models
that are customized and
fine-tuned for their use
cases. Porting ML models
to custom HW poses a
lot of challenges to the
developers, primarily
because the ML engineers
involved in the model
training might not be aware
of the limitations of all the
HW options available out
there. The fact that not
all HW can run all models
is exacerbated by the
rapid progress in model
development where a new
state-of-the-art (SOTA) is
established every week.

The ML application
pipeline
AI HW vendors typically
provide model porting
tools that convert trained
ML models provided in
the form of protobuffers
or flatbuffers (ONNX,
TFLite, etc.) to binaries that
can be executed on the
HW. They also provide a
runtime that executes these
model binaries. However,
tools to compile a model
and run the model binary
alone are not sufficient for
integrating the ML models
to application SW. This
is because the pipeline
for an AI application is
so much more than just
ML model inference.

The first step in an AI
application is capturing the
input (image, voice, text)
from the source. In the case
of computer vision (CV)
applications, the typical
sources of input are cameras.
Since cameras are used in a
wide variety of applications,
such as surveillance, quality
control, and machine vision

to name but a few, the format
of the input varies depending
on the type of the camera
and the application. The
incoming input stream can be
encoded in H.264 or H.265 or
MJPEG formats. Additionally,
the resolution of the input
can take one of the many
possible values, such as VGA
(640x480), 720p (1280x720),
1080p (1920x1080) and so
on. Hence, the input needs
to be decoded before it
can be further processed
by the ML models.

ML models are trained at
some resolution (generally
with square sizes such as
224x224, 416x416, and
640x640) which may not
match the input resolution
of the camera used in the
application. The data used for
model training comes from
different sources and contains
images of different sizes.
Using square images while
training allows the trained
models to address different
scenarios, as models can
be trained at one resolution
and deployed at a different

26 May/June 2023 • designing-electronics.com

Shashi Kiran Chilappagari, Co-Founder
and Chief Architect DeGirum Corp

A typical ML pipeline for a CV application

resolution. However, this
means that the decoded
input needs to be resized to
the resolution at which the
ML model is deployed. The
inputs are often normalized
before running the inference.

Different ML models provide
different information about the
input image. Classification
models provide a list of
most likely labels, whereas
detection models provide
labels for the objects as
well as their location in
the image. The location

information is provided in
the form of bounding boxes.
This information is not the
direct output of the model;
it is obtained by processing
the output of the model using
methods specific to the model
type. Classification models
involve sorting the probabilities
of the labels to find the
most likely labels, whereas
detection models need to
decode bounding boxes and
run a non-max suppression
(NMS) algorithm to weed out
extra overlapping predictions.
The final predictions need

to be resized to the original
input size and then rendered
for visual inspection or sent
upstream so that application-
specific logic can be applied
to the output and proper
action can be taken.

Challenges in
model porting
Such a deep pipeline poses
several challenges to the
application developers, some
of which are as follows.

#1 Replicating Model
Accuracy: Developers want

to ensure that the accuracy of
the originally trained ML model
is retained after porting it to
custom HW. The model may
undergo several optimizations
before being compiled for
the HW, and the developers
need to be confident that such
optimizations do not lead to
loss of accuracy. However,
replicating model accuracy
after porting is a challenging
task as the accuracy depends
on a lot of implementation
details listed below:

• Image Backend: The image
processing library used to
process the inputs. Examples
include popular packages
such as OpenCV and PIL.
• Interpolation Options:
Options used for interpolating
images when resizing the
images to the size expected
by the ML model. Most
common options used
include (a) nearest neighbor,
(b) bilinear, (c) area, (d)
bicubic, and (e) lanczos.
• Resize Options: Parameter
that specifies how the
image is resized to the size
expected by the ML model
and how the aspect ratio is
handled. Common options
include (a) stretching, (b)
letterboxing, (c) cropping
and then resizing, and (d)
resizing and then cropping.
• Normalization: In some
ML models, the input is
normalized using per channel
mean and standard deviation
parameters before being
sent to the ML inference
• Quantization: Model
quantization can lead to
smaller model size and
faster inference (especially
on custom HW). However,
quantization can impact
the model performance.

Developers need a SW
stack that can take all
these parameters into
account to evaluate

May/June 2023 27

Visualizing outputs for (a) An object detection
model, and (b) an image classification model

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE

the performance of
the ported model.

#2 Visualizing model output:
To verify that an ML model
has been ported successfully,
developers need SW to
visualize the output of the
ML model on some sample
inputs. Since different types
of models provide different
information, a lot of boilerplate
code is needed to visualize
the model output. Image
classification models provide
top labels for the image, object
detection models provide
bounding box information for
various detected objects in the
image, pose detection models
provide key-point information,
and sematic segmentation
models provide per-pixel
class label information.
Rendering these different
types of information requires
developing code specific
to handling these cases.

#3 Handling multiple
HW options: Consider a
scenario where an application
developer wants to evaluate
multiple HW options and
choose the HW best suited
for their use case. In such
a scenario, they have to
develop multiple SW stacks,
each one addressing a
different HW option. This is
due to the fact that the model
porting tools—along with the
inference runtime libraries—
are HW specific. Once they’ve
developed the application,
they need to evaluate all the
options and then pick the
right HW. This leads to a lot
of wasted time, effort, and
money as bringing up custom
HW is a long, expensive,
and frustrating experience.

#4 Optimizing Performance:
Employing a multistage
pipeline in the application
has implications on the
overall performance as each

stage needs to be pipelined
efficiently. Different stages
may utilize different HW
resources (such as video
decoders, ML accelerators.
etc.), which further
complicates the optimization
process. In order to utilize the
AI HW accelerator resources
efficiently, developers need to
carefully analyze the various
stages and orchestrate the
application’s execution so
that the final application is
stable and efficient. Executing
each stage of the pipeline in a
single synchronous thread will
lead to high latency and poor
utilization of HW resources.

DeGirum’s PySDK
DeGirum’s python software
development kit (PySDK)
is specifically designed to
address the challenges faced
by application developers.
Instead of just providing an
inference runtime library
that focuses on running the
ML model inference, the
PySDK provides a simple
Model Predict API that
handles the pre-processing
of the input (including
resizing and normalization),
the ML inference, and the
post-processing of the
output (including rendering
predictions on original image).

The PySDK also provides a
highly efficient Batch Predict
API that pipelines all stages
of the application, including
input capture and decoding as
well as running the application
logic. The PySDK manages
all the ML inference calls to
the AI HW and ensures that
these calls are scheduled in
such a way as to maximize the
HW usage. Other highlights
of the PySDK include:

• A single JSON file that
specifies all the parameters
related to input pre-
processing, ML inference,

and output post-processing.
This greatly helps the model
developers to replicate
model accuracy benchmarks
on the ported model.
• A Model Predict API that
handles overlaying predictions
for different model types such
as image classification, object
detection, key-point detection,
and sematic segmentation.
This feature obviates the need
to develop boilerplate code for
various common use case.
• HW agnostic APIs that
ensure that the same code
works for multiple HW options.
This allows developers to
create a unified SW stack
that can be used to evaluate
multiple HW options and
pick the best suited option.

The simplicity of the
Model Predict API can
be illustrated using the
code snippet below:

This code illustrates a YOLOv5
model running on DeGirum’s
ORCA HW. By changing the
model name, the same code
can be used to run other
types of models. Also, the
same code can be used to run
across different HW options.

Porting ML models to
custom HW poses a lot of
challenges to the developers,
but DeGirum’s PySDK can
help smooth the way.

www.degirum.com

28 May/June 2023 • designing-electronics.com

“DeGirum’s python
software development
kit (PySDK) is
specifically designed
to address the
challenges faced
by application
developers”

