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Porting ML models 
to custom AI HW 
accelerators
DeGirum’s PySDK 
can help developers 
who wish to port ML 
models to custom HW

Upcoming hardware (HW) 
accelerators for edge 
artificial intelligence (AI) 
applications promise 
unprecedented efficiency 
in power, price, and 
performance. HW vendors 
generally couple their HW 
with software (SW) tools, 
illustrating applications 
that run out-of-the-box 
along with a collection 
of ready to use machine 
learning (ML) models.

While such models are 
sufficient to get started with 
the development process, 
application developers 
eventually want to port 
their own ML models 
that are customized and 
fine-tuned for their use 
cases. Porting ML models 
to custom HW poses a 
lot of challenges to the 
developers, primarily 
because the ML engineers 
involved in the model 
training might not be aware 
of the limitations of all the 
HW options available out 
there. The fact that not 
all HW can run all models 
is exacerbated by the 
rapid progress in model 
development where a new 
state-of-the-art (SOTA) is 
established every week.

The ML application 
pipeline
AI HW vendors typically 
provide model porting 
tools that convert trained 
ML models provided in 
the form of protobuffers 
or flatbuffers (ONNX, 
TFLite, etc.) to binaries that 
can be executed on the 
HW. They also provide a 
runtime that executes these 
model binaries. However, 
tools to compile a model 
and run the model binary 
alone are not sufficient for 
integrating the ML models 
to application SW. This 
is because the pipeline 
for an AI application is 
so much more than just 
ML model inference. 

The first step in an AI 
application is capturing the 
input (image, voice, text) 
from the source. In the case 
of computer vision (CV) 
applications, the typical 
sources of input are cameras. 
Since cameras are used in a 
wide variety of applications, 
such as surveillance, quality 
control, and machine vision 

to name but a few, the format 
of the input varies depending 
on the type of the camera 
and the application. The 
incoming input stream can be 
encoded in H.264 or H.265 or 
MJPEG formats. Additionally, 
the resolution of the input 
can take one of the many 
possible values, such as VGA 
(640x480), 720p (1280x720), 
1080p (1920x1080) and so 
on. Hence, the input needs 
to be decoded before it 
can be further processed 
by the ML models.

ML models are trained at 
some resolution (generally 
with square sizes such as 
224x224, 416x416, and 
640x640) which may not 
match the input resolution 
of the camera used in the 
application. The data used for 
model training comes from 
different sources and contains 
images of different sizes. 
Using square images while 
training allows the trained 
models to address different 
scenarios, as models can 
be trained at one resolution 
and deployed at a different 
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resolution. However, this 
means that the decoded 
input needs to be resized to 
the resolution at which the 
ML model is deployed. The 
inputs are often normalized 
before running the inference.

Different ML models provide 
different information about the 
input image. Classification 
models provide a list of 
most likely labels, whereas 
detection models provide 
labels for the objects as 
well as their location in 
the image. The location 

information is provided in 
the form of bounding boxes. 
This information is not the 
direct output of the model; 
it is obtained by processing 
the output of the model using 
methods specific to the model 
type. Classification models 
involve sorting the probabilities 
of the labels to find the 
most likely labels, whereas 
detection models need to 
decode bounding boxes and 
run a non-max suppression 
(NMS) algorithm to weed out 
extra overlapping predictions. 
The final predictions need 

to be resized to the original 
input size and then rendered 
for visual inspection or sent 
upstream so that application-
specific logic can be applied 
to the output and proper 
action can be taken.

Challenges in 
model porting
Such a deep pipeline poses 
several challenges to the 
application developers, some 
of which are as follows.

#1 Replicating Model 
Accuracy: Developers want 

to ensure that the accuracy of 
the originally trained ML model 
is retained after porting it to 
custom HW. The model may 
undergo several optimizations 
before being compiled for 
the HW, and the developers 
need to be confident that such 
optimizations do not lead to 
loss of accuracy. However, 
replicating model accuracy 
after porting is a challenging 
task as the accuracy depends 
on a lot of implementation 
details listed below:

• Image Backend: The image 
processing library used to 
process the inputs. Examples 
include popular packages 
such as OpenCV and PIL.
• Interpolation Options: 
Options used for interpolating 
images when resizing the 
images to the size expected 
by the ML model. Most 
common options used 
include (a) nearest neighbor, 
(b) bilinear, (c) area, (d) 
bicubic, and (e) lanczos.
• Resize Options: Parameter 
that specifies how the 
image is resized to the size 
expected by the ML model 
and how the aspect ratio is 
handled. Common options 
include (a) stretching, (b) 
letterboxing, (c) cropping 
and then resizing, and (d) 
resizing and then cropping.
• Normalization: In some 
ML models, the input is 
normalized using per channel 
mean and standard deviation 
parameters before being 
sent to the ML inference 
• Quantization: Model 
quantization can lead to 
smaller model size and 
faster inference (especially 
on custom HW). However, 
quantization can impact 
the model performance.

Developers need a SW 
stack that can take all 
these parameters into 
account to evaluate 

May/June 2023 27

Visualizing outputs for (a) An object detection 
model, and (b) an image classification model

ARTIFICIAL INTELLIGENCE



ARTIFICIAL INTELLIGENCE

the performance of 
the ported model.

#2 Visualizing model output: 
To verify that an ML model 
has been ported successfully, 
developers need SW to 
visualize the output of the 
ML model on some sample 
inputs. Since different types 
of models provide different 
information, a lot of boilerplate 
code is needed to visualize 
the model output. Image 
classification models provide 
top labels for the image, object 
detection models provide 
bounding box information for 
various detected objects in the 
image, pose detection models 
provide key-point information, 
and sematic segmentation 
models provide per-pixel 
class label information. 
Rendering these different 
types of information requires 
developing code specific 
to handling these cases.

#3 Handling multiple 
HW options: Consider a 
scenario where an application 
developer wants to evaluate 
multiple HW options and 
choose the HW best suited 
for their use case. In such 
a scenario, they have to 
develop multiple SW stacks, 
each one addressing a 
different HW option. This is 
due to the fact that the model 
porting tools—along with the 
inference runtime libraries—
are HW specific. Once they’ve 
developed the application, 
they need to evaluate all the 
options and then pick the 
right HW. This leads to a lot 
of wasted time, effort, and 
money as bringing up custom 
HW is a long, expensive, 
and frustrating experience.

#4 Optimizing Performance: 
Employing a multistage 
pipeline in the application 
has implications on the 
overall performance as each 

stage needs to be pipelined 
efficiently. Different stages 
may utilize different HW 
resources (such as video 
decoders, ML accelerators. 
etc.), which further 
complicates the optimization 
process. In order to utilize the 
AI HW accelerator resources 
efficiently, developers need to 
carefully analyze the various 
stages and orchestrate the 
application’s execution so 
that the final application is 
stable and efficient. Executing 
each stage of the pipeline in a 
single synchronous thread will 
lead to high latency and poor 
utilization of HW resources.

DeGirum’s PySDK
DeGirum’s python software 
development kit (PySDK) 
is specifically designed to 
address the challenges faced 
by application developers. 
Instead of just providing an 
inference runtime library 
that focuses on running the 
ML model inference, the 
PySDK provides a simple 
Model Predict API that 
handles the pre-processing 
of the input (including 
resizing and normalization), 
the ML inference, and the 
post-processing of the 
output (including rendering 
predictions on original image).

The PySDK also provides a 
highly efficient Batch Predict 
API that pipelines all stages 
of the application, including 
input capture and decoding as 
well as running the application 
logic. The PySDK manages 
all the ML inference calls to 
the AI HW and ensures that 
these calls are scheduled in 
such a way as to maximize the 
HW usage. Other highlights 
of the PySDK include:

• A single JSON file that 
specifies all the parameters 
related to input pre-
processing, ML inference, 

and output post-processing. 
This greatly helps the model 
developers to replicate 
model accuracy benchmarks 
on the ported model.
• A Model Predict API that 
handles overlaying predictions 
for different model types such 
as image classification, object 
detection, key-point detection, 
and sematic segmentation. 
This feature obviates the need 
to develop boilerplate code for 
various common use case.
• HW agnostic APIs that 
ensure that the same code 
works for multiple HW options. 
This allows developers to 
create a unified SW stack 
that can be used to evaluate 
multiple HW options and 
pick the best suited option.

The simplicity of the 
Model Predict API can 
be illustrated using the 
code snippet below:

This code illustrates a YOLOv5 
model running on DeGirum’s 
ORCA HW. By changing the 
model name, the same code 
can be used to run other 
types of models. Also, the 
same code can be used to run 
across different HW options.

Porting ML models to 
custom HW poses a lot of 
challenges to the developers, 
but DeGirum’s PySDK can 
help smooth the way.
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“DeGirum’s python 
software development 
kit (PySDK) is 
specifically designed 
to address the 
challenges faced 
by application 
developers”


